Telomere Length Correlations among Somatic Tissues in Adult Zebra Finches
نویسندگان
چکیده
Telomeres are repetitive non coding DNA sequences located at the end of eukaryotic chromosomes, which maintain the integrity of the genome by hiding the chromosome ends from being recognised as double stranded breaks. Telomeres are emerging as biomarkers for ageing and survival, and are susceptible to reflect different individual life history trajectories. In particular, the telomere length with which one starts in life has been shown to be linked with individual life-long survival, suggesting that telomere dynamics can be a proxy for individual fitness and thereby be implicated in evolutionary trade-offs. As a consequence, an increasing number of studies were conducted on telomeres in the fields of ecology and evolutionary biology, in which telomere length was almost exclusively measured from blood samples. However, not only do the number of repeats of the telomeric sequences vary among species, but also within species with great inter-individual telomere lengths variability with age, tissues, and chromosomes. This raises the issue of the exact biological meaning of telomere measurement in blood cells and stimulated the study of the correlation of telomere lengths among tissues over age. By measuring telomere length in adult zebra finches (Taeniopygia guttata) in different somatic tissues displaying variable cell turnovers (bone marrow, brain, spleen, pectoral muscle, heart, liver and in red blood cells), we checked that the measure of telomere length in red blood cells is related to telomere lengths in the other tissues. Here we show significant relationships between the telomere lengths of red blood cells and several somatic tissues at adulthood. As red blood cells are easily accessible and suitable for the longitudinal monitoring of the individual rate of telomere loss, our study confirms that telomere length measured in red blood cells could serve as a surrogate for telomere length in the whole avian organism.
منابع مشابه
Telomeres and longevity
the basic elements of telomere biology are very similar across many taxa [1], there is diversity among species, and among tissues, in telomere dynamics. Not surprisingly, given that species differ in many other relevant aspects of their biology, including the pattern of activity of the telomere-restoring enzyme telomerase simple comparisons of average telomere length across species do not map d...
متن کاملTelomere length in early life predicts lifespan.
The attrition of telomeres, the ends of eukaryote chromosomes, is thought to play an important role in cell deterioration with advancing age. The observed variation in telomere length among individuals of the same age is therefore thought to be related to variation in potential longevity. Studies of this relationship are hampered by the time scale over which individuals need to be followed, par...
متن کاملEmbryonic and postnatal telomere length decrease with ovulation order within clutches
Telomere length (TL) in early life has been found to be predictive of subsequent lifespan. Factors such as parental TL, parental age and environmental conditions during development have been shown to contribute to the observed variation in TL among individuals. One factor that has not hitherto been considered is ovulation order, although it is well established that the last hatched/born offspri...
متن کاملDevelopmental and tissue-specific regulation of mouse telomerase and telomere length.
Telomere shortening and telomerase activation in human somatic cells have been implicated in cell immortalization and cellular senescence. To further study the role of telomerase in immortalization, we assayed telomere length and telomerase activity in primary mouse fibroblasts, in spontaneously immortalized cell clones, and in mouse tissues. In the primary cell cultures, telomere length decrea...
متن کاملIncreased brood size leads to persistent eroded telomeres
†These authors have contributed equally to this work. Costs of reproduction can be divided in mandatory costs coming from physiological, metabolic, and anatomical changes required to sustain reproduction itself, and in investment-dependent costs that are likely to become apparent when reproductive efforts are exceeding what organisms were prepared to sustain. Interestingly, recent data showed t...
متن کامل